Задание 12 из ЕГЭ по математике (база): задача 214
В равнобедренном треугольнике точка касания вписанной окружности делит боковую сторону в отношении $2:5$, считая от вершины основания. Радиус окружности, вписанной в этот треугольник, равен $2√ 5$. Найдите боковую сторону.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.
В треугольнике ABC известно, что AB = BC, медиана BL равна $18$. Площадь треугольника ABC равна $108√7$. Найдите длину стороны BC.