Задание 12 из ЕГЭ по математике (база): задача 214

Разбор сложных заданий в тг-канале:

В равнобедренном треугольнике точка касания вписанной окружности делит боковую сторону в отношении $2:5$, считая от вершины основания. Радиус окружности, вписанной в этот треугольник, равен $2√ 5$. Найдите боковую сторону.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

По рисунку найдите угол b, если известно, что угол $b = 5a$.

В окружности по разные стороны от диаметра $AB$ взяты точки $D$ и $C$. Известно, что $∠ABC = 38°$. Найдите угол $CDB$. Ответ дайте в градусах.

В параллелограмме ABCD проведена биссектриса угла B, пересекающая сторону AD в точке L. Найдите LD, если периметр параллелограмма равен 32, а сторона CD равна 6.

В выпуклом четырёхугольнике $LMNK$ известно, что $LM = MN, LK = KN, ∠M = 64°, ∠K = 122°$. Найдите угол $N$. Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!