Задание 12 из ЕГЭ по математике (база): задача 215

Разбор сложных заданий в тг-канале:

В равнобедренном треугольнике точка касания вписанной окружности делит боковую сторону в отношении $2:5$, считая от вершины основания. Радиус окружности, вписанной в этот треугольник, равен $2√ 5$. Найдите боковую сторону.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике MNK MN = NK, угол MNK равен $48°$. Найдите внешний угол LMN. Ответ дайте в градусах.

В выпуклом четырёхугольнике $LMNK$ известно, что $LM = MN, LK = KN, ∠M = 64°, ∠K = 122°$. Найдите угол $N$. Ответ дайте в градусах.

В выпуклом четырёхугольнике $ABCD$ известно, что $AB = BC, AD = CD, ∠B = 85°, ∠D = 131°$. Найдите угол $A$. Ответ дайте в градусах.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.