Задание 12 из ЕГЭ по математике (база): задача 213
Окружность радиусом $15$, вписанная в равнобедренный треугольник, делит боковую сторону этого треугольника в отношении $2:3$, считая от вершины основания. Во сколько раз длина окружности, описанной около этого треугольника, превосходит число $π$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В окружности по разные стороны от диаметра $AB$ взяты точки $D$ и $C$. Известно, что $∠ABC = 38°$. Найдите угол $CDB$. Ответ дайте в градусах.
В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.