Задание 12 из ЕГЭ по математике (база): задача 213

Разбор сложных заданий в тг-канале:

Окружность радиусом $15$, вписанная в равнобедренный треугольник, делит боковую сторону этого треугольника в отношении $2:3$, считая от вершины основания. Во сколько раз длина окружности, описанной около этого треугольника, превосходит число $π$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Прямые a и b параллельны. Найдите угол 2, если угол 1 равен $112°$. Ответ дайте в градусах.

В окружности по разные стороны от диаметра $AB$ взяты точки $D$ и $C$. Известно, что $∠ABC = 38°$. Найдите угол $CDB$. Ответ дайте в градусах.

В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.

По рисунку найдите угол b, если известно, что угол $b = 5a$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!