Задание 8 из ЕГЭ по математике (профиль): задача 13
На рисунке (см. с. ) изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5; 7)$. В какой точке отрезка $[-3; 2]$ $f(x)$ принимает наименьшее значение?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Прямая $y=5x+4$ параллельна касательной к графику функции $y=x^2-4x-12$. Найдите абсциссу точки касания.
Прямая $y=-3x+2$ параллельна касательной к графику функции $y=x^2+8x+1$. Найдите абсциссу точки касания.
На рисунке изображён график $y=f'(x)$ производной функции $f(x)$. Найдите абсциссу точки, в которой касательная к графику $y=f(x)$ параллельна оси абсцисс или совпадает с ней.