Задание 8 из ЕГЭ по математике (профиль): задача 10

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 34 сек.

На рисунке (см. с. ) изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5; 7)$. В какой точке отрезка $[-3; 2]$ $f(x)$ принимает наименьшее значение?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график производной функции $y=f'(x)$, определённой на интервале $(-5;5)$. Найдите количество точек экстремума функции $f(x)$ на отрезке $[-4;3]$.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^{3} - 4t^{2} + t$, где $x$ - расстояние от точки отсчета в метрах, $t$ -  время в секундах, измеренное с начала движен…

Материальная точка движется прямолинейно по закону $x(t) = -t^{4} +7t^{3} +6t+16$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. Н…

На рисунке изображён график некоторой функции $y=f(x)$ (два луча с общей начальной точкой). Пользуясь рисунком, вычислите $F(7)-F(-3)$, где $F(x)$ — одна из первообразных функции $f(x)$.