Задание 8 из ЕГЭ по математике (профиль): задача 13

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 18 сек.

На рисунке (см. с. ) изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5; 7)$. В какой точке отрезка $[-3; 2]$ $f(x)$ принимает наименьшее значение?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Материальная точка движется прямолинейно по закону $x(t) = -t^{4} +7t^{3} +6t+16$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. Н…

На рисунке изображен график функции $y=f(x)$. Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой $5$. Найдите $f'(5)$.

На рисунке изображён график $y=f'(x)$ производной функции $f(x)$. Найдите абсциссу точки, в которой касательная к графику $y=f(x)$ параллельна оси абсцисс или совпадает с ней.

Прямая $y=5x+4$ параллельна касательной к графику функции $y=x^2-4x-12$. Найдите абсциссу точки касания.