Задание 8 из ЕГЭ по математике (профиль): задача 122

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 28 сек.

Функция $y=f(x)$ определена на промежутке $(-5;4)$. На рисунке изображён график её производной. Найдите число касательных к графику функции $y=f(x)$, которые наклонены под углом в $45°$ к положительному направлению оси абсцисс.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Прямая $y=-3x+2$ параллельна касательной к графику функции $y=x^2+8x+1$. Найдите абсциссу точки касания.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

Материальная точка движется прямолинейно по закону
$x(t)={1} / {3}t^3-{5} / {2}t^2-3t+7$, где $x$ — расстояние от точки отсчёта в метрах, $t$ — время в секундах, измеренное с начала дви…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!