Задание 17 из ЕГЭ по математике (профиль): задача 67

Разбор сложных заданий в тг-канале:

ABCD - прямоугольник. Окружность с центром в точке A радиуса AD пересекает продолжение стороны DA в точке K. Прямая KB пересекает прямую CD в точке P, а окружность во второй раз - в точке M.

а) Докажите, что CP = CM.

б) Найдите BD, если AM = 15, MC = 8.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольном треугольнике ABC проведена высота CH к гипотенузе AB. На катетах AC и BC отмечены точки R и V так, что треугольник RHV прямоугольный. а) Докажите, что треугольник RVH

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по 10% за полугодие, II год — по 20% за по…

Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на 12%, а в конце четвёртого года …

В треугольнике ABC с прямым углом C MN - средняя линия, параллельная стороне AC. Биссектриса угла A пересекает луч MN в точке K.

а) Докажите, что BKC~AMK.

б) Найдите отношение SBKC:SAMK,…