Задание 17 из ЕГЭ по математике (профиль): задача 67
ABCD - прямоугольник. Окружность с центром в точке A радиуса AD пересекает продолжение стороны DA в точке K. Прямая KB пересекает прямую CD в точке P, а окружность во второй раз - в точке M.
а) Докажите, что CP = CM.
б) Найдите BD, если AM = 15, MC = 8.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана равнобедренная трапеция $ABCD$ с основаниями $AD$ и $BC$. Окружность с центром $O$, построенная на боковой стороне $AB$ как на диаметре, касается боковой стороны $CD$ и второй раз пересек…
В треугольнике $ABC$ с прямым углом $C$ $MN$ - средняя линия, параллельная стороне $AC$. Биссектриса угла $A$ пересекает луч $MN$ в точке $K$.
а) Докажите, что $△BKC~△AMK$.
б) Найдите отношение $S_{BKC} : S_{AMK}$,…
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …