Задание 1 из ЕГЭ по математике (профиль): задача 119

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 29 сек.

В параллелограмме $ABCD$ проведена высота $CH$ к стороне $AD$. Косинус угла $A$ равен $-{√ {5}} / {5}$, а сторона $AB$ равна $2√ 5$. Прямая $BH$ делит диагональ $AC$ в отношении $3:5$, считая от вершины $A$. Найдите площадь параллелограмма $ABCD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В остроугольном треугольнике $ABC$ угол $C$ равен $72^°$. $BH$ и $AM$ — высоты, пересекающиеся в точке $O$ (см. рис.). Найдите угол $HOM$. Ответ дайте в градусах.

В треугольнике $MNK$ известно, что $MK=NK$, $MN=4{,}8$, $\sin M={21} / {29}$ (см. рис.). Найдите $MK$.

В треугольнике $ABC$ $AC=BC$, $AB=15$
и $\tg ∠ BAC={2√ {5}} / {5}$ (см. рис.). Найдите высоту $AH$.

Площадь параллелограмма $ABCD$ равна $324$.Точка $P$ - середина стороны $BC$. Найдите площадь трапеции $APCD$.