Задание 19 из ЕГЭ по математике (профиль): задача 15
Ксюша задумала трёхзначное натуральное число $n$. В результате деления этого числа на сумму его цифр получается натуральное число $m$. а) Может ли $m=11$? б) Какое наименьшее число $n$ могла задумать Ксюша, если известно, что средняя цифра этого числа равна $9$, а первая цифра — чётная и больше $2$? в) Чему равно наименьшее возможное значение $m$, если последняя цифра числа $n$ равна $4$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При проведении школьной математической олимпиады итоговая сумма баллов составляется из двух баллов за участие, $13$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую …
Костя написал на доске несколько различных натуральных чисел, каждое из которых делится нацело на $7$ и оканчивается на $8$. а) Может ли их сумма равняться $644$? б) Может ли их среднее …
Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …