При каких значениях параметра $a$ система $\{\table\5{|x|} + 12{|y - 2|} = 60; \y^2 - a^2 = 4(y - 1) - x^2;$ …
При каких значениях параметра $a$ система
$\{\table\5{|x|} + 12{|y - 2|} = 60; \y^2 - a^2 = 4(y - 1) - x^2;$
имеет ровно $4$ решения?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите все значения параметра $a$, при каждом из которых неравенство $a^2-2a-\cos^2x-4a⋅\sin x>-4$ выполняется для любого значения $x$.
Найдите все неотрицательные значения $a$, при каждом из которых система уравнений
$\{\table\√{(x-3)^2+y^2}+√{x^2+(y-a)^2}=√{a^2+9}; \y={|2-a^2|};$
имеет единственное решение.
Найдите все значения параметра $a$, при каждом из которых неравенство $a^2+2a-\sin^2x+a⋅\cos x>2$ выполняется для любого значения $x$.