Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

При каких значениях параметра $a$ система $\{\table\5{|x|} + 12{|y - 2|} = 60; \y^2 - a^2 = 4(y - 1) - x^2;$ …

Разбор сложных заданий в тг-канале:

При каких значениях параметра $a$ система

$\{\table\5{|x|} + 12{|y - 2|} = 60; \y^2 - a^2 = 4(y - 1) - x^2;$

имеет ровно $4$ решения?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения параметра $a$, при каждом из которых неравенство $a^2-2a-\cos^2x-4a⋅\sin x>-4$ выполняется для любого значения $x$.

Найдите все неотрицательные значения $a$, при каждом из которых система уравнений

$\{\table\√{(x-3)^2+y^2}+√{x^2+(y-a)^2}=√{a^2+9}; \y={|2-a^2|};$

имеет единственное решение.

Найдите все значения параметра $a$, при каждом из которых неравенство $a^2+2a-\sin^2x+a⋅\cos x>2$ выполняется для любого значения $x$.

Найдите все значения параметра $a$, при каждом из которых уравнение
${2a^2-ax-3a+3⋅ 2^x+2^x(x-2a)} / {x^2-x}=0$ имеет хотя бы один корень и все корни принадлежат промежутку $[-1;3]$.