Задание 17 из ЕГЭ по математике (профиль): задача 42
$AL$ — биссектриса равнобедренного треугольника $ABC$ с основанием $AC$. На продолжении стороны $AC$ за вершину $C$ взята точка $K$ так, что $AL=LK$. a) Докажите, что треугольник $CKL$ равнобедренный. б) В каком отношении прямая $KL$ делит сторону $AB$ треугольника $ABC$, если $\cos∠ BAC={1} / {5}$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.
а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, …
Точки $A$, $B$, $C$, $D$ и $E$ лежат на окружности в указанном порядке, причём $AB=AE=ED$, а прямые $AC$ и $BD$ перпендикулярны. Отрезки $BD$ и $CE$ пересекаются в точке $K$. а) Докажите, что прямая $AD$ …
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …