Задание 17 из ЕГЭ по математике (профиль): задача 19
В равнобедренной трапеции $ABCD$ меньшее основание $BC$ равно боковой стороне. На плоскости взята точка $E$ так, что прямая $BE$ перпендикулярна $AD$ и прямая $CE$ перпендикулярна $BD$. а) Докажите, что $∠ AEB=∠ BDA$. б) Найдите площадь трапеции $ABCD$, если $AB=32$, $\cos ∠ AEB= {7} / {8}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В окружность вписана трапеция $ABCD$ с основаниями $AD$ и $BC$, один из углов которой равен $60°$. В трапецию вписана ещё одна окружность.
а) Докажите, что центр описанной окружности трапе…