Зарегистрироваться Войти через вк

Найдите все значения $a$, при каждом из которых уравнение ${x-3a}/{x+3}+{x-2}/{x-a}=1$ …

Найдите все значения $a$, при каждом из которых уравнение ${x-3a}/{x+3}+{x-2}/{x-a}=1$ имеет единственный корень.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?

Найдите все значения $a$, при каждом из которых уравнение ${3x + a - x^2 + 4a^2x - x^3}/{4a^2x - x^3} = 1$ имеет единственный корень.

При каких значениях $a$ система уравнений имеет ровно два решения?

$\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?