Зарегистрироваться Войти через вк

Найдите все значения $a$, при каждом из которых уравнение $√{3^{2x} - 5a} = 3^{x} - a$ …

Найдите все значения $a$, при каждом из которых уравнение $√{3^{2x} - 5a} = 3^{x} - a$ имеет единственный корень.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения параметра $a$, при каждом из которых система уравнений $\{{\table {y=a-x{,}}; {|x-2|(y+5x-10)=(x-2)^3};}$ имеет ровно четыре различных решения.

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?

При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?

Найдите все значения $a$, при которых система уравнений

$\{\table\(x+1)^2=(y-2)^2; \(x+1)^2+(y-a)^2=3a^2-2a+4;$

имеет ровно три решения.