Регистрация Войти
Задание 7. Стереометрия
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Задание 7 из ЕГЭ по математике (профильной). Страница 3

За это задание вы можете получить 1 балл на ЕГЭ в 2020 году
Задача 41

На рисунке изображён график функции $y = f(x)$, определённой на интервале $(-5; 6)$. Определите количество целых точек, в которых производная функции положительна.

Задача 42

Прямая $y = -3x + 4$ параллельна касательной к графику функции $y = -x^2 + 5x - 7$. Найдите абсциссу точки касания.

Задача 43

На рисунке изображён график $y = f'0(x)$ - производной функции $f(x)$. Найдите абсциссу точки, в которой касательная к графику функции $y = f(x)$ параллельна оси абсцисс или совпадает с …

Задача 44

На рисунке изображён график $y = f' 0(x)$ - производной функции $f(x)$. Найдите абсциссу точки, в которой касательная к графику функции $y = f(x)$ параллельна прямой $y = 3x + 2$ или совпа…

Задача 45

На рисунке изображён график функции $y = f(x)$ и отмечены точки $-6, -1, 1, 4$ на оси абсцисс. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Задача 46

На рисунке изображён график функции $y = f(x)$ и семь точек на оси абсцисс: $x_1, x_2, x_3, x_4, x_5, x_6, x_7$. В скольких из этих точек производная функции $f(x)$ отрицательна?

Задача 47

На рисунке изображён график функции $y = f(x)$, определённой на промежутке $(-5; 7)$. Найдите количество точек, в которых производная функции $f(x)$ равна нулю на отрезке $[-2; 4]$.

Задача 48

На рисунке изображён график некоторой функции $y=s(x)$. Найдите площадь заштрихованной фигуры, если одна из первообразных функции $s(x)$ имеет вид: $S(x) = {x^3} / {3} + x^{2} + 3x- 1$. …

Задача 49

На рисунке изображена ломаная линия — график некоторой функции $y=g(x)$. Пользуясь рисунком, вычислите $G(6) - G(-2)$, где $G(x)$ — одна из первообразных функции $g(x)$.

Задача 50

На рисунке изображён график функции $y=F(x)$ — одной из первообразных некоторой функции $f(x)$, определённой на интервале $(-3;7)$. Пользуясь рисунком, определите количество решений урав…

Задача 51

На рисунке изображён график функции $y=h(x)$ и отмечены точки $-4$, $-1$, $2$, $5$. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Задача 52

На рисунке изображён график $y=p'(x)$ — производной функции $p(x)$, определённой на интервале $(-3;7)$. В какой точке отрезка $[3;6]$ функция $p(x)$ принимает наименьшее значение.

Задача 53

На рисунке изображён график функции $y= g(x)$, определённой на интервале $(-3;7)$ (см. рис.). Определите количество целых точек, в которых производная функции отрицательна.

Задача 54

На рисунке изображён график некоторой функции $y=f(x)$. Функция $F(x)=3x^3+12x^2+20x-{18} / {5}$ — одна из первообразных функции $f(x)$. Найдите площадь закрашенной фигуры.

Задача 55

На рисунке изображён график функции $y=f(x)$ (два луча с общей точкой). Пользуясь рисунком, вычислите $F(-3)-F(-7)$, где $F(x)$ — одна из первообразных функции $f(x)$.

Задача 56

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5;11)$. Найдите количество точек максимума функции $f(x)$, принадлежащих отрезку $[-3;10]$.

Задача 57

На рисунке изображён график функции $y=f(x)$, определённой на интервале $(-5;10)$. Определите количество целых точек, в которых производная функции положительна.

Задача 58

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-6;6)$. Найдите количество точек, в которых касательная к графику функции $f(x)$ параллельна…

Задача 59

Прямая $y=3{,}2x-4$ параллельна касательной к графику функции $y=2x^2 + 3x -5$. Найдите абсциссу точки касания.

Задача 60

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-3;5)$. Найдите точку максимума функции $f(x)$.

1 2 3 4 5 ... 12