Задание 25 из ОГЭ по математике: задача 43
Длины двух сторон треугольника равны $2$ и $3$, его площадь $S={3√ {15}} / {4}$. Медиана, проведенная к его третьей стороне, меньше её половины. Найдите $R√ {15}$, где $R$ — радиус описанной около этого треугольника окружности.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $KLMN$ боковая сторона $KL$ перпендикулярна основанию $LM$. Окружность проходит через точки $M$ и $N$ и касается прямой $KL$ в точке $S$. Найдите расстояние от точки $S$ до прямой $MN$, е…
На стороне $BC$ остроугольного треугольника $ABC$ $(AB≠ AC)$ как на диаметре построена полуокружность, пересекающая высоту $AL$ в точке $Q$, $AL=25$, $QL=15$, $H$ — точка пересечения высот треугол…
В треугольнике $KLM$ биссектриса угла $K$ делит высоту, проведённую из вершины $L$, в отношении $29:21$, считая от точки $L$. Найдите радиус окружности, описанной около треугольника $KLM$, есл…