Задание 25 из ОГЭ по математике: задача 43
Длины двух сторон треугольника равны $2$ и $3$, его площадь $S={3√ {15}} / {4}$. Медиана, проведенная к его третьей стороне, меньше её половины. Найдите $R√ {15}$, где $R$ — радиус описанной около этого треугольника окружности.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Две касающиеся внешним образом в точке $M$ окружности, радиусы которых равны $14$ и $42$, вписаны в угол с вершиной $A$. Общая касательная к этим окружностям, проходящая через точку $M$, пер…
В треугольнике $ABC$ биссектриса $BM$ и медиана $AN$ перпендикулярны, при этом $AN=8$, $BM=12$. Найдите стороны треугольника $ABC$.
Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?