Задание 25 из ОГЭ по математике: задача 44

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 18 сек.

Площадь треугольника $ABC$ равна $105$. Биссектриса $BD$ пересекает медиану $CM$ в точке $O$, при этом $CD:AD=1:5$. Найдите площадь четырёхугольника $AMOD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

В выпуклом четырёхугольнике $NPLM$ диагональ $NL$ является биссектрисой угла $PNM$ и пересекается с диагональю $PM$ в точке $T$. Найдите $NT$, если известно, что около четырёхугольника $NPLM$ мо…

На стороне $BC$ остроугольного треугольника $ABC$ $(AB≠ AC)$ как на диаметре построена полуокружность, пересекающая высоту $AL$ в точке $Q$, $AL=25$, $QL=15$, $H$ — точка пересечения высот треугол…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!