Задание 25 из ОГЭ по математике: задача 45
В трапеции $ ABCD $ с основаниями $ BC $ и $ AD $ построены две окружности, касающиеся боковых сторон трапеции. Первая окружность касается боковых сторон в точках $ B $ и $ C $, а вторая — в точках $ A $ и $ D $. Оказалось, что окружности касаются внешним образом, а их радиусы равны $ 2 $ и $ 3 $. Найдите высоту трапеции
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 14$, а углы $B$ и $C$ четырёхугольника равны соответственно $133^°$ и $107^°$.
Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 18$, а углы $B$ и $C$ четырёхугольника равны соответственно $123^°$ и $102^°$.
В треугольнике $ABC$ на его медиане $BN$ отмечена точка $M$ так, что $BM:MN=5:2$. Прямая $AM$ пересекает сторону $BC$ в точке $T$. Найдите отношение площади треугольника $ABM$ к площади четырёхуго…