Задание 25 из ОГЭ по математике: задача 39

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 2 сек.

В равнобедренном треугольнике $ABC$ ($AB=BC$) точки $M$ и $N$ — середины боковых сторон. Найдите радиус окружности, вписанной в треугольник $MBN$, если периметр треугольника $ABC$ равен $32$, а длина отрезка $MN$ равна $6$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

В выпуклом четырёхугольнике $NPLM$ диагональ $NL$ является биссектрисой угла $PNM$ и пересекается с диагональю $PM$ в точке $T$. Найдите $NT$, если известно, что около четырёхугольника $NPLM$ мо…

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!