Задание 25 из ОГЭ по математике: задача 39

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 58 сек.

В равнобедренном треугольнике $ABC$ ($AB=BC$) точки $M$ и $N$ — середины боковых сторон. Найдите радиус окружности, вписанной в треугольник $MBN$, если периметр треугольника $ABC$ равен $32$, а длина отрезка $MN$ равна $6$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 14$, а углы $B$ и $C$ четырёхугольника равны соответственно $133^°$ и $107^°$.

Найдите площадь трапеции, диагонали которой равны $7$ и $24$, а средняя линия равна $12{,}5$.

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!