Задание 23 из ОГЭ по математике: задача 35

Разбор сложных заданий в тг-канале:

Медиана $BD$ и биссектриса $CK$ треугольника $ABC$ пересекаются в точке $M$, длина стороны $AC$ относится к длине стороны $BC$ как $3 : 4$. Найдите отношение площади треугольника $CMD$ к площади треугольника $ABC$.
Так как задание второй части, ответ тут получится дробный, так и запишите его, к примеру: $5/13$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=16,2, BH=5.

В прямоугольном треугольнике катет и гипотенуза равны соответственно 7 и 25. Найдите высоту, проведенную к гипотенузе, радиусы вписанной и описанной окружностей, площадь треугольни…

В прямоугольном треугольнике катет и гипотенуза равны соответственно 7 и 25. Найдите высоту, проведенную к гипотенузе, радиусы вписанной и описанной окружностей, площадь треугольни…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!