Задание 23 из ОГЭ по математике: задача 35
Медиана $BD$ и биссектриса $CK$ треугольника $ABC$ пересекаются в точке $M$, длина стороны $AC$ относится к длине стороны $BC$ как $3 : 4$. Найдите отношение площади треугольника $CMD$ к площади треугольника $ABC$.
Так как задание второй части, ответ тут получится дробный, так и запишите его, к примеру: $5/13$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=16,2, BH=5.
Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.
Точка $A$, лежащая вне окружности, соединена с концами хорды $BC$ этой окружности. Отрезки $AB$ и $AC$ пересекают окружность соответственно в точках $K$ и $P$, отличных от $B$ и $C$. $K$ лежит между…