Задание 23 из ОГЭ по математике: задача 35
Медиана $BD$ и биссектриса $CK$ треугольника $ABC$ пересекаются в точке $M$, длина стороны $AC$ относится к длине стороны $BC$ как $3 : 4$. Найдите отношение площади треугольника $CMD$ к площади треугольника $ABC$.
Так как задание второй части, ответ тут получится дробный, так и запишите его, к примеру: $5/13$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:35:15. Найдите радиус описанной около этого треугольника окружности, если меньша…
Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $4:9:11$. Найдите меньшую сторону, если радиус $R$ этой окружности равен $14$.