Задание 22 из ОГЭ по математике: задача 60
При каких значениях $a$ неравенство $x^2+(a+1)x+3/4a+7/4≤0$ не имеет решений?
1. $a∈(-2; 3)$
2. $a∈(0; 3)$
3. $a∈(3; 5)$
4. Решений нет
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.
Постройте график функции $y={|x-1|}-{|x+1|}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=-2$
2. $a=2$
3. $a∈(-2; 2)$
4. $a∈(-∞; -2)∪(2; +∞)$
…
Найдите $p$ и постройте график функции $y=x^2+p$, если известно, что прямая $y=3x$ имеет с этим графиком ровно одну общую точку.