Задание 22 из ОГЭ по математике: задача 60
При каких значениях $a$ неравенство $x^2+(a+1)x+3/4a+7/4≤0$ не имеет решений?
1. $a∈(-2; 3)$
2. $a∈(0; 3)$
3. $a∈(3; 5)$
4. Решений нет
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y={|2x-6|}-{|2x+4|}+x$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно три общие точки.
1. $a∈(-7; 8)$
2. $a=(-∞; -7)∪(8; +∞)$
…
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(-x+3y-6)^2+(x-y+2)^2$? В ответ запишите значение переменной $x$.
При каком наибольшем значении $a$ прямая $y=ax-2$ имеет с графиком функции $y=x^2-1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.