Задание 22 из ОГЭ по математике: задача 59

Разбор сложных заданий в тг-канале:

При каких значениях $a$ неравенство $x^2+(a-6)x+21/4-a≤0$ не имеет решений?
1. $a∈(0; 3)$
2. $a∈(0; 5)$
3. $a∈(3; 5)$
4. Решений нет

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(-x+3y-6)^2+(x-y+2)^2$? В ответ запишите значение переменной $x$.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.

Постройте график функции $y={(x^2+x-2)(x^2-5x+6)}/{x^2-3x+2}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наиболь…

Постройте график функции $y=|x^2-x-6|$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!