Задание 22 из ОГЭ по математике: задача 111
При каких отрицательных значениях $k$ прямая $y=kx-1$ имеет с параболой $y=x^2+2x+3$ единственную общую точку (касается)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.
Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.
Постройте график функции ${(√{x^2+4x+3})^2}/{x+1}$ и определите, при каких значениях $k$ прямая $y=kx$ не имеет с графиком данной функции общих точек.
1. $k=0$
2. $k=-2$
3. $k∈[-2; 0)∪{{1}}$
4…