Задание 22 из ОГЭ по математике: задача 111
При каких отрицательных значениях $k$ прямая $y=kx-1$ имеет с параболой $y=x^2+2x+3$ единственную общую точку (касается)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|-x+3y-6|+|x-y+2|$? В ответ запишите значение переменной $x$.
Постройте график функции $y={(x^2+3x)|x|} / {x+3}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком ни одной общей точки.