Задание 22 из ОГЭ по математике: задача 111

Разбор сложных заданий в тг-канале:

При каких отрицательных значениях $k$ прямая $y=kx-1$ имеет с параболой $y=x^2+2x+3$ единственную общую точку (касается)?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.

Постройте график функции ${(√{x^2+4x+3})^2}/{x+1}$ и определите, при каких значениях $k$ прямая $y=kx$ не имеет с графиком данной функции общих точек.
1. $k=0$
2. $k=-2$
3. $k∈[-2; 0)∪{{1}}$
4…

Постройте график функции $y={(x^2-x)|x|} / {x-1}$ и определите, при каких значениях $m$ прямая $y=m$ не имеет с графиком ни одной общей точки.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!