Зарегистрироваться Войти через вк

Длины двух сторон треугольника равны $2$ и $3$, его площадь $S={3√ {15}} / {4}$. Меди…

Сложность:
Среднее время решения: 3 мин. 18 сек.

Длины двух сторон треугольника равны $2$ и $3$, его площадь $S={3√ {15}} / {4}$. Медиана, проведенная к его третьей стороне, меньше её половины. Найдите $R√ {15}$, где $R$ — радиус описанной около этого треугольника окружности.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции $KLMN$ боковая сторона $KL$ перпендикулярна основанию $LM$. Окружность проходит через точки $M$ и $N$ и касается прямой $KL$ в точке $S$. Найдите расстояние от точки $S$ до прямой $MN$, е…

В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.

В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Популярные материалы