Найдите площадь четырёхугольника $ABCD$ (см. рис.), вершины которого заданы своим…
Найдите площадь четырёхугольника $ABCD$ (см. рис.), вершины которого заданы своими координатами: $A(2;2)$, $B(3,5)$, $C(6;6)$, $D(5;3)$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $KLMN$ основания $KN$ и $LM$ равны соответственно $80$ и $10$, а сумма углов при основании $KN$ равна $90^°$. Найдите радиус окружности, проходящей через точки $K$ и $L$ и касающейся прям…
Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…
Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанно…