Задание 13 из ЕГЭ по математике (база): задача 77
Найдите объём многогранника, вершинами которого являются точки $A$, $B$, $C$, $D$, $A_{1}$, $B_{1}$ прямоугольного параллелепипеда $ABCDA_{1}B_{1}C_{1}D_{1}$, у которого $AB=7$, $AD=4$, $AA_{1}=6$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Даны два конуса. Радиус основания и образующая первого конуса равны соответственно 5 и 15, а второго - 18 и 25. Во сколько раз площадь боковой поверхности второго конуса больше пло…
В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ рёбра $AB, AD$ и диагональ боковой грани $AB_1$ равны соответственно $10, 8$ и $√{116}$. Найдите объём параллелепипеда $ABCDA_1B_1C_1D_1$.
Даны два цилиндра. Радиус основания и высота первого равны соответственно 8 и 2, а второго 2 и 8. Во сколько раз объём первого цилиндра больше объёма второго?