Задание 12 из ЕГЭ по математике (база): задача 283

Разбор сложных заданий в тг-канале:

В параллелограмме $ABCD$ проведена высота $CH$ к стороне $AD$. Косинус угла $A$ равен $-{√ {5}} / {5}$, а сторона $AB$ равна $2√ 5$. Прямая $BH$ делит диагональ $AC$ в отношении $3:5$, считая от вершины $A$. Найдите площадь параллелограмма $ABCD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.

В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.

Основания равнобедренной трапеции 12 и 28, боковая сторона равна 17. Найдите высоту трапеции.