Задание 12 из ЕГЭ по математике (база): задача 338
Точки $A$, $B$, $C$, $D$, расположенные на окружности, делят эту окружность на четыре дуги $AB$, $BC$, $CD$ и $AD$, градусные величины которых относятся соответственно как $5:3:4:6$ (см. рис.). Найдите угол $C$ четырёхугольника $ABCD$. Ответ дайте в градусах.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В равнобедренном треугольнике $ABC$ боковые стороны $AB = BC = 10$, медиана $BM = 8$. Найдите $cos∠BCA$.
Четырёхугольник вписан в окружность. Угол $ABC$ равен $80°$, угол $ACD$ равен $39°$. Найдите угол $CBD$. Ответ дайте в градусах.
Один из внешних углов треугольника равен $80^°$. Углы, не смежные с данным внешним углом, относятся как $2:3$ (см. рис.). Найдите наибольший из них. Ответ дайте в градусах.