Задание 8 из ЕГЭ по математике (профиль): задача 48
Прямая $y=56$ параллельна касательной к графику функции $y=x^2-21x+9$. Найдите абсциссу точки касания.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На рисунке изображён график $y=f'(x)$ производной функции $f(x)$ и девять точек на оси абсцисс: $x_1, x_2, x_3, …, x_9$. Сколько из этих точек принадлежит промежуткам возрастания функции…
На рисунке изображён график некоторой функции $y=f(x)$ (два луча с общей начальной точкой). Пользуясь рисунком, вычислите $F(1)-F(-7)$, где $F(x)$ — одна из первообразных функции $f(x)$.
На рисунке изображён график производной функции $f(x)$, определённой на интервале $(-5;4)$. В какой точке отрезка $[-4;1]$ $f(x)$ принимает наибольшее значение?