Задание 8 из ЕГЭ по математике (профиль): задача 141

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 4 сек.

Прямая $y=-5x+19$ является касательной к графику функции $y= x^3-3x^2-2x+18$. Найдите абсциссу точки касания.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график производной функции $y=f'(x)$, определённой на интервале $(-5;5)$. Найдите точку максимума функции $y=f(x)$ на интервале $(-3;3)$.

На рисунке (см. с. ) изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5; 7)$. В какой точке отрезка $[-3; 2]$ $f(x)$ принимает наименьшее значение?

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

Прямая $y=5x+4$ параллельна касательной к графику функции $y=x^2-4x-12$. Найдите абсциссу точки касания.