Задание 8 из ЕГЭ по математике (профиль): задача 141

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 11 сек.

На рисунке изображён график производной функции $f(x)$, определённой на интервале $(-2;12)$. Найдите количество точек, в которых касательная к графику функции $f(x)$ параллельна прямой $y=2x+15$ или совпадает с ней.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Прямая $y=5x+4$ параллельна касательной к графику функции $y=x^2-4x-12$. Найдите абсциссу точки касания.

На рисунке изображён график $y=f'(x)$ производной функции $f(x)$ и девять точек на оси абсцисс: $x_1, x_2, x_3, …, x_9$. Сколько из этих точек принадлежит промежуткам возрастания функции…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

Материальная точка движется прямолинейно по закону
$x(t)={1} / {3}t^3-{5} / {2}t^2-3t+7$, где $x$ — расстояние от точки отсчёта в метрах, $t$ — время в секундах, измеренное с начала дви…