Задание 8 из ЕГЭ по математике (профиль): задача 98

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 35 сек.

Прямая $y=3x+30$ параллельна касательной к графику функции $y=x^3+5x^2-5x-18$. Найдите наименьшую из возможных абсцисс точек касания.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график функции $y=f(x)$. Функция $F(x)=x^3-6x^2+14x+{1} / {2}$ — одна из первообразных функции $f(x)$. Найдите площадь заштрихованной фигуры.

Материальная точка движется прямолинейно по закону
$x(t)={1} / {3}t^3-{5} / {2}t^2-3t+7$, где $x$ — расстояние от точки отсчёта в метрах, $t$ — время в секундах, измеренное с начала дви…

Прямая $y=56$ параллельна касательной к графику функции $y=x^2-21x+9$. Найдите абсциссу точки касания.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…