Задание 8 из ЕГЭ по математике (профиль): задача 101

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 36 сек.

Прямая $y=3x+30$ параллельна касательной к графику функции $y=x^3+5x^2-5x-18$. Найдите наименьшую из возможных абсцисс точек касания.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Прямая $y=2x-7$ является касательной к графику функции$y= x^3+6x^2+2x-7$.Найдите абсциссу точки касания.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…

Материальная точка движется прямолинейно по закону
$x(t)={1} / {3}t^3-{5} / {2}t^2-3t+7$, где $x$ — расстояние от точки отсчёта в метрах, $t$ — время в секундах, измеренное с начала дви…

На рисунке изображён график некоторой функции $y=f(x)$ (два луча с общей начальной точкой). Пользуясь рисунком, вычислите $F(7)-F(-3)$, где $F(x)$ — одна из первообразных функции $f(x)$.