Задание 8 из ЕГЭ по математике (профиль): задача 121

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 38 сек.

Найдите угловой коэффициент касательной, проведённой к графику функции $y=f(x)$ в точке с абсциcсой $x_0=4$, если на рисунке изображён график производной этой функции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-8;5)$. Найдите промежутки возрастания функции $f(x)$. В ответе укажите сумму целых точек, в…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-5; 8)$. Найдите количество точек, в которых касательная к графику функции $f(x)$ параллельн…

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…