Задание 8 из ЕГЭ по математике (профиль): задача 97
На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-6;7)$. В какой точке отрезка $[-4;5]$ функция $f(x)$ принимает наименьшее значение?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Прямая $y=56$ параллельна касательной к графику функции $y=x^2-21x+9$. Найдите абсциссу точки касания.
Прямая $y=5x+4$ параллельна касательной к графику функции $y=x^2-4x-12$. Найдите абсциссу точки касания.
На рисунке изображён график некоторой функции $y=f(x)$ (два луча с общей начальной точкой). Пользуясь рисунком, вычислите $F(1)-F(-7)$, где $F(x)$ — одна из первообразных функции $f(x)$.