Задание 13 из ЕГЭ по математике (профиль): задача 48

Разбор сложных заданий в тг-канале:

а) Решите уравнение: $ 1/{{sin}^2{x}} - 1/{sin{x}} - 2 = 0 $

б) Укажите все корни уравнения, принадлежащие промежутку $ [-{3π}/2; 0) $

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $\cos2x=\sin(x-{5π} / {2})$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $[5{π}; {13π}/2]$.

а) Решите уравнение ${sin x - 1}/{1 + cos2x}= {sin x - 1}/{1 + cos(π+ x)}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-{3π}/{2};-{π}/{2}]$.

а) Решите уравнение $3\cos({3π} / {2}-2x)-2\cos(π+x)=0$.

б) Найдите корни этого уравнения, принадлежащие отрезку $[{5π}/2; 4{π}].$

а) Решите уравнение $(2 sin^2 4x - 3 cos 4x)·√{tg x} = 0$.

б) Укажите корни этого уравнения, принадлежащие промежутку $(0;{3π}/{2}]$.