Задание 1 из ЕГЭ по математике (профиль): задача 181

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 58 сек.

Окружность радиусом $15$, вписанная в равнобедренный треугольник, делит боковую сторону этого треугольника в отношении $2:3$, считая от вершины основания. Во сколько раз длина окружности, описанной около этого треугольника, превосходит число $π$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

В треугольнике $MNK$ известно, что $MK=NK$, $MN=4{,}8$, $\sin M={21} / {29}$ (см. рис.). Найдите $MK$.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.

Основания равнобедренной трапеции равны 20 и 50, а её боковые стороны равны 17. Найдите площадь трапеции.