Задание 1 из ЕГЭ по математике (профиль): задача 182

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 59 сек.

Окружность радиусом $15$, вписанная в равнобедренный треугольник, делит боковую сторону этого треугольника в отношении $2:3$, считая от вершины основания. Во сколько раз длина окружности, описанной около этого треугольника, превосходит число $π$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Угол $CAB$ равен $54^°$. Найдите угол $AOB$. Ответ дайте в градусах.

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Угол $CAB$ равен $54^°$. Найдите угол $AOB$. Ответ дайте в градусах.

В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.

Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь относится к площади прямоугольника как $√ {3}:2$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!