Задание 1 из ЕГЭ по математике (профиль): задача 182

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 0 сек.

Окружность радиусом $15$, вписанная в равнобедренный треугольник, делит боковую сторону этого треугольника в отношении $2:3$, считая от вершины основания. Во сколько раз длина окружности, описанной около этого треугольника, превосходит число $π$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.

В треугольнике $ABC$ угол $C$ прямой, $AC=9$, $\sin A={4} / {5}$ (см. рис.). Найдите $AB$.

Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь относится к площади прямоугольника как $√ {3}:2$.

В четырёхугольнике $ABCD$ стороны $AB, BC, CD$ и $AD$ стягивают дуги описанной окружности, градусные величины которых равны соответственно $75°, 84°, 51°, 150°$. Найдите угол $B$ этого четыр…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!