Задание 1 из ЕГЭ по математике (профиль): задача 124

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 35 сек.

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите периметр параллелограмма $ABCD$, если известно, что $CL=12$, а площадь $▵ ABL$ равна 15.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания равнобедренной трапеции равны 15 и 43. Косинус острого угла трапеции равен 0.7. Найдите боковую сторону.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\tg A=0{,}7$ (см. рис.). Найдите $BC$.

В четырёхугольнике $ABCD$ стороны $AB, BC, CD$ и $AD$ стягивают дуги описанной окружности, градусные величины которых равны соответственно $75°, 84°, 51°, 150°$. Найдите угол $B$ этого четыр…

В треугольнике $ABC$ угол $A$ равен $67^°$, а углы $B$ и $C$ — острые. $BD$ и $CE$ — высоты, пересекающиеся в точке $O$ (см. рис.). Найдите угол $DOE$. Ответ дайте в градусах.