Задание 1 из ЕГЭ по математике (профиль): задача 125

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 36 сек.

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите периметр параллелограмма $ABCD$, если известно, что $CL=12$, а площадь $▵ ABL$ равна 15.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $150°$. Найдите боковую сторону треугольника, если его площадь равна 324.

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\tg A=0{,}7$ (см. рис.). Найдите $BC$.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\cos A={6} / {7}$ (см. рис.). Найдите $AB$.