Задание 1 из ЕГЭ по математике (профиль): задача 123

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 45 сек.

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите площадь параллелограмма $ABCD$, если известно, что $BL=6$, а периметр $▵ CDL$ равен $18$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике ABC угол A равен $65°$, угол C равен $53°$. На продолжении стороны AB за точку B отложен отрезок BD, равный стороне BC. Найдите угол D треугольника BCD. Ответ дайте в гр…

Найдите вписанный угол, опирающийся на дугу, длина которой равна ${5}/{18}$ длины окружности. Ответ дайте в градусах.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=12$, $\cos A={6} / {7}$ (см. рис.). Найдите $AB$.

Точки A,B,C, расположенные на окружности, делят её на три дуги, градусные меры которых относятся как 2 : 3 : 4. Найдите больший угол треугольника ABC. Ответ дайте в градусах.