Задание 1 из ЕГЭ по математике (профиль): задача 364

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 59 сек.

В треугольнике $ABC$ $CH$ — высота, $AK$ — биссектриса, $O$ — точка пересечения прямых $CH$ и $AK$, угол $BAK$ равен $31^°$. Найдите угол $AOC$. Ответ дайте в градусах (см. рис.).

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

p>В параллелограмме $ABCD$ известно, что $AB=18$, $BC=27$, $\sin ∠ C={8} / {9}$ (см. рис.). Найдите бОльшую высоту параллелограмма.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основа…

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

Найдите площадь ромба, если его диагонали равны $3√ {7}$ и $12√ {7}$.