Задание 1 из ЕГЭ по математике (профиль): задача 364
В треугольнике $ABC$ $CH$ — высота, $AK$ — биссектриса, $O$ — точка пересечения прямых $CH$ и $AK$, угол $BAK$ равен $31^°$. Найдите угол $AOC$. Ответ дайте в градусах (см. рис.).
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основа…
Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?