а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Посл…
а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд может быть у последовательности $c_n$?
б) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $S_k = b_1+b_2+...+b_k$. Какое наибольшее количество подряд идущих членов последовательности $S_k$ могут быть простыми числами?
в) Дана геометрическая прогрессия $b_n$ с натуральными членами и простым знаменателем, $c_n = b_1n+b_{n+1}+b_{n+2}$. Какое наибольшее количество подряд идущих членов последовательности $c_n$ могут быть простыми числами?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Люба задумала трёхзначное натуральное число $n$ и посчитала сумму его цифр $s$. а) Возможно ли, что $n⋅ s = 27080$? б) Найдите все возможные значения $n$, при которых $n⋅ s=400$. в) Известно…
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
Стрелок ведёт стрельбу по закрывающимся $4n-1 (n ∈ N, n > 1)$ мишеням, расположенным в одну линию друг за другом. Результаты стрельбы заносятся в одну строку, состоящую из $4n - 1$ кле…