Задание 19 из ЕГЭ по математике (профиль): задача 41
При проведении школьной математической олимпиады итоговая сумма баллов составляется из двух баллов за участие, $13$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую взятую и нерешённую задачу. Каждую задачу участник выбирает себе самостоятельно в запечатанном конверте. Число задач, предлагаемых для решения, не ограничено. а) У одного из участников, решившего $p$ задач и не решившего $q$ задач, итоговая сумма оказалась равной $u$ баллов. Найдите итоговую сумму участника, решившего $2p$ задач и не решившего $2q$ задач. б) Какое минимальное число задач надо взять, чтобы итоговая сумма оказалась равной нулю? в) Докажите, что если итоговая сумма у двух участников оказалась одинаковой, то разность между числом всех задач, взятых для решения одним участником, и числом задач, взятых для решения другим участником, делится на $21$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:
а) четыре числа;
б) сто чисел;
в) бесконечное множество чисел, котор…
Последовательность натуральных чисел: $1, 3, 6, 10, 15, …$ задана формулой $a_n={1} / {2}n(n+1)$. Можно ли среди а) её членов, меньших числа $100$, выбрать семь чисел так, чтобы одно из …
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ …