Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из р…
Бесконечная арифметическая прогрессия $a_1, a_2, . . . , a_n, . . .$ состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_7$ ровно три числа делятся на $90$?
б) Существует ли такая прогрессия, в которой среди чисел $a_1, a_2, . . . , a_{40}$ ровно $11$ чисел делятся на $90$?
в) Для какого наибольшего натурального числа n могло оказаться так, что среди чисел $a_1, a_2, . . . , a_{3n}$ больше кратных $90$, чем среди чисел $a_{3n+1}, a_{3n+2}, . . . , a_{7n}$, если дополнительно известно, что разность прогрессии равна $1$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На столе перед нумизматом лежит 200 монет орлом кверху. За один ход нумизмат переворачивает любые 4 различные монеты. Разрешается переворачивать и те монеты, которые уже были задей…
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев:
…