При каких значениях $a$ система уравнений имеет ровно два решения? $\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$ …
При каких значениях $a$ система уравнений имеет ровно два решения?
$\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите все значения $q$, при каждом из которых система уравнений $\{\table\ {xy^{2}-7xy-7y+49}/{√{x+7}}=0; \y=qx;$ имеет ровно два различных решения.
Найдите все значения параметра $a$, при каждом из которых неравенство $a^2+2a-\sin^2x+a⋅\cos x>2$ выполняется для любого значения $x$.
Найдите все значения параметра $a$, при каждом из которых неравенство $a^2-2a-\cos^2x-4a⋅\sin x>-4$ выполняется для любого значения $x$.