Задание 17 из ЕГЭ по математике (профиль): задача 39
Квадрат $ABCD$ вписан в окружность. Хорда $CF$ пересекает его диагональ $BD$ в точке $L$. а) Докажите, что $CL⋅ CF=AB^2$. б) Найдите отношение $CL$ и $LF$, если $∠ DCF=30°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В квадрате $ABCD$ взята точка $M$ так, что $MD=MC$ и
$∠ MCD=15^°$. а) Докажите, что $AM=MB=AB$. б) Найдите площадь треугольника $MCD$, если сторона квадрата равна $9$.
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
В трапеции $ABCD$ основания $BC$ и $AD$ равны $2$ и $12$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=5$ …