Задание 14 из ЕГЭ по математике (профиль): задача 28
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, а боковые рёбра равны $12$. Точка $P$ — середина ребра $AA_1$, на ребре $DD_1$ отмечена точка $T$ так, что $DT:TD_1=1:5$. а) Докажите, что плоскость $CPT$ делит ребро $BB_1$ в отношении $1:2$. б) Найдите угол между плоскостями $ABC$ и $CPT$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=10$, а боковое ребро $SA=15$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM={40} / {7}$, $SK=6$. а) До…
Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.
а) Постройте сечение пирамиды плоск…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 16$, высота $SO = 6$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 8$. Плоскость $γ$ параллельна прямой $BC$ и …