В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 48, а высот…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 48, а высота $SO$ равна 18. Точка $F$ — середина бокового ребра $SC$, точка $E$ — середина ребра $CD$. Плоскость $ABF$ пересекает боковое ребро $SD$ в точке $G$. а) Докажите, что прямая $FG$ пересекает отрезок $SE$ в его середине. б) Найдите расстояние от точки $F$ до плоскости $ABS$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=BC=6$, $ AA_1=12$, точки $M$ и $K$ — середины $AB$ и $BC$ соответственно, точка $N$ лежит на ребре $BB_1$, причём $BN=6$. Через точ…
Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.
а) Д…
В основании пирамиды $DABC$ лежит правильный треугольник $ABC$ со стороной $5$. Ребро $CD$ перпендикулярно плоскости основания. Точки $K, L,$ и $M$ лежат на рёбрах $AD, BD$ и $AC$ соответственно. …