Зарегистрироваться Войти через вк

При каких значениях $a$ система уравнений имеет ровно два решения? $\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$ …

При каких значениях $a$ система уравнений имеет ровно два решения?

$\{\table\ {||x|-5|+{|y-4|}}=3; {|x+2|}+{|y+1|}=a;$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения параметра $p$, при каждом из которых система неравенств $\{{\table {px⩾ 5,}; {p<√ {x-1},}; {3x⩾ p+2};}$ имеет хотя бы одно решение на отрезке $[4; 5]$.

Через точку $(a, f(a))$ графика функции $f(x) = -x^2 +8x-16$ (где значение параметра $a ∈(0, 4))$ проведена касательная к графику, пересекающаяся с осями координат в точках A и B. При ка…

Найдите все значения $q$, при каждом из которых система уравнений $\{\table\ {x^{2}-7xy-7y+49}/{√{x+7}}=0; \y=qx;$ имеет ровно два различных решения.

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?