Задание 15 из ЕГЭ по информатике: задача 21

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 53 сек.

Пусть m&n - поразрядная конъюнкция неотрицательных целых чисел m и n.

Например, 14&5 = $1110_2$&$0101_2$ = $0100_2$ = 4.

Для какого наименьшего неотрицательного целого числа А формула

x&41 ≠ 0 → (x&35 = 0 → x&А ≠ 0)

тождественно истинна (т. е. принимает значение 1 при любом неотрицательном целом значении переменной х)?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Для какого наибольшего целого неотрицательного числа А выражение

(20 ≠ 5y + 2x) ⋁ (A < x) ⋁ (A < y)

тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях п…

Для какого наименьшего целого неотрицательного числа A выражение

(3x + y < A) ⋁ (x > 15) ⋁ (y > 20)

тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значения…

Даны множества P = {3, 6, 12, 22, 54, 103}, Q = {3, 8, 12, 24, 54, 107, 211} и A. Элементами множества являются натуральные числа. Известно, что выражение

(¬(x ∈ A) ∨ ¬((x ∈ Q) ∧ (…

На числовой прямой даны два отрезка: P = [24, 35] и Q = [30, 68]. Укажите наименьшую возможную длину такого отрезка A, что логическое выражение

(¬(x ∈ P ) → ((x ∈ Q) ∨ (x ∈ P ))) →…