Задание 25 из ОГЭ по математике: задача 41
На стороне $AC$ прямоугольного треугольника $ABC$ с прямым углом $C$ как на диаметре построена окружность, пересекающая сторону $AB$ в точке $K$. Найдите радиус окружности, описанной около треугольника $BCK$, если $AC=13$, $AK=5$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…
Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
В треугольнике $ABC$ биссектриса $BM$ и медиана $AN$ перпендикулярны, при этом $AN=8$, $BM=12$. Найдите стороны треугольника $ABC$.