Задание 23 из ОГЭ по математике: задача 127
В прямоугольной трапеции $ABCD$ с основаниями $AD$ и $BC$ угол $A$ прямой. Окружность проходит через точки $C$ и $D$ и касается стороны $AB$ в точке $O$. Найдите расстояние от точки $O$ до прямой $CD$, если $AD=48$, $BC=12$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ …
Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=15, AB=CQ=20, BQ=10, AC=38. Найдите PQ.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.