Задание 23 из ОГЭ по математике: задача 127
В прямоугольной трапеции $ABCD$ с основаниями $AD$ и $BC$ угол $A$ прямой. Окружность проходит через точки $C$ и $D$ и касается стороны $AB$ в точке $O$. Найдите расстояние от точки $O$ до прямой $CD$, если $AD=48$, $BC=12$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
В прямоугольном треугольнике катет и гипотенуза равны соответственно 5 и 13. Найдите высоту, проведенную к гипотенузе. В ответ запишите целую часть получившегося числа.