Задание 23 из ОГЭ по математике: задача 127
В прямоугольной трапеции $ABCD$ с основаниями $AD$ и $BC$ угол $A$ прямой. Окружность проходит через точки $C$ и $D$ и касается стороны $AB$ в точке $O$. Найдите расстояние от точки $O$ до прямой $CD$, если $AD=48$, $BC=12$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Углы $A$ и $B$ треугольника $ABC$ равны соответственно $76^°$ и $59^°$. Найдите радиус $R$ окружности, описанной около треугольника $ABC$, если $AB=√ 2$.
Найдите угол $ABO$, если его сторона $AB$ касается окружности с центром в точке $O$, а дуга $AC$, заключённая внутри этого угла, равна $120^°$
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.