Задание 23 из ОГЭ по математике: задача 123

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 43 сек.

Биссектриса угла $A$ параллелограмма $ABCD$ делит сторону $BC$ на отрезки $BK=7$ см и $KC=4$ см. Найдите периметр параллелограмма $ABCD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=126, расстояние от центра окружности до хорды AB равно 16, а до хорды CD равно 25.

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=36, BH=4.

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $2$ : $3$ : $7$. Найдите радиус окружности, если меньшая из сторон равна $8$.

Биссектрисы углов $A$ и $D$ при основании равнобедренной трапеции $ABCD$ пересекаются в точке $M$, лежащей на основании $BC$. Найдите $AB$, если $BC=38$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!