Задание 23 из ОГЭ по математике: задача 123

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 43 сек.

Биссектриса угла $A$ параллелограмма $ABCD$ делит сторону $BC$ на отрезки $BK=7$ см и $KC=4$ см. Найдите периметр параллелограмма $ABCD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=36, BH=4.

Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $AC$, если $BD = 42$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $21$ и $20$.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=18, CD=54, AD=36. Найдите AO.

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $2$ : $3$ : $7$. Найдите радиус окружности, если меньшая из сторон равна $8$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!