Задание 23 из ОГЭ по математике: задача 123
Биссектриса угла $A$ параллелограмма $ABCD$ делит сторону $BC$ на отрезки $BK=7$ см и $KC=4$ см. Найдите периметр параллелограмма $ABCD$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=36, BH=4.
Биссектрисы углов $K$ и $L$ параллелограмма $KLMN$ пересекаются в точке $P$. Найдите площадь параллелограмма, если $LM=20$, а расстояние от точки $P$ до стороны $KL$ равно $7$.
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $2$ : $3$ : $7$. Найдите радиус окружности, если меньшая из сторон равна $8$.