Задание 23 из ОГЭ по математике: задача 12
Окружность с центром на стороне $AC$ треугольника $ABC$ проходит через вершину $A$ и касается прямой $BC$ в точке $B$. Найдите диаметр окружности, если $BC = 18$, $AC = 24$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна $7$.
Точка $M$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AM = 4$, $AB = 16$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.