Задание 23 из ОГЭ по математике: задача 4
Окружность с центром на стороне $AC$ треугольника $ABC$ проходит через вершину $A$ и касается прямой $BC$ в точке $B$. Найдите диаметр окружности, если $BC = 18$, $AC = 24$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Биссектрисы углов $K$ и $L$ параллелограмма $KLMN$ пересекаются в точке $P$. Найдите площадь параллелограмма, если $LM=20$, а расстояние от точки $P$ до стороны $KL$ равно $7$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Углы $A$ и $D$ треугольника $ABD$ равны соответственно $64^°$ и $86^°$. Найдите $AD$, если радиус окружности, описанной около треугольника $ABD$, равен $5$